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ABSTRACT

Qualitative and quantitative data are presented for woods of 37 species representing 11 genera;
most species included represent a maximal degree of woodiness for the family, and herbaceous groups
are mostly omitted. Growth rings are absent or nearly so. Vessel elements have simple perforation
plates (except for Kohleria elegans) and alternate circular or oval pits of various sizes on vessel-vessel
walls (often laterally elongate, often with gaping apertures, on vessel-parenchyma and vessel-septate
fiber interfaces). Grooves interconnect pit apertures in vessels of four genera. Vessels are grouped,
usually in radial chains, to a moderate extent. Tyloses are present. Imperforate tracheary elements are
libriform fibers or (Coronanthera) fiber tracheids with vestigial borders on pits. Septa are present in
imperforate tracheary elements of most species, but in most species of Cyrtandra, septate fibers occur
only near vessels. Uniseriate rays are present in some species, but in most species rays are multiseriate
only or are absent altogether. Vascular and vasicentric tracheids are absent. In Cyrtandra, wood with
multiseriate rays can be demonstrated to be rayless earlier in ontogeny. Crystals are present in rays
and in septate fibers of a few species. Storying is present in a few species. All features of wood reflect
the mesic habitats characteristic of Gesneriaceae, but moderate degrees of xeromorphy are illustrated
by species in which narrow vessels, grouped vessels, and grooves in vessel walls occur. The wood
anatomy of Drymonia reflects its vining habit. Raylessness may indicate secondary woodiness in
Besleria and Cyrtandra. Wood anatomy of Gesneriaceae is consonant with a hypothesis that the family
is closely related to Acanthaceae, Scrophulariaceae, and other families of Scrophulariales.
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INTRODUCTION

Gesneriaceae is a large pantropical family generally referred to the order Scroph-
ulariales. Heywood (1978) estimates that the family contains 125 genera and 2000
species. Despite its large size, Gesneriaceae contains only a small proportion of
woody species. Most of these belong to the genus Cyrtandra. The species studied
here represent woodier taxa of the family (e.g., Cyrtandra) except for Chirita,
which was studied to see what wood characteristics may be found in relatively
herbaceous gesneriads.

Wood anatomy can offer information concerning relationships, and thus is
studied for Gesneriaceae here despite the fact that the affinities of the family are
not controversial. The order Scrophulariales (Bignoniales of Thorne 1976) is
generally construed as containing Acanthaceae, Bignoniaceae, Lentibulariaceae,
Martyniaceae, Myoporaceae, Orobanchaceae, Pedaliaceae, Plantaginaceae,
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Scrophulariaceae, and a few smaller families according to Cronquist (1981), Dahl-
gren (1980), Takhtajan (1980), and Thorne (1976). The families most often placed
next to Gesneriaceae in the phylogenetic sequences of these authors are Acan-
thaceae, Myoporaceae, and Scrophulariaceae, although the sequences given differ
considerably. The present study is part of a review of wood anatomy of tubiflorous
families of dicotyledons in an attempt to define orders and assign families to
logical positions within these orders.

Monographic studies on wood anatomy often offer opportunities for compar-
isons between wood anatomy and ecology. However, Gesneriaceae as a family
have typically mesic preferences, and thus ecological comparisons can cover only
a limited range. In addition, the family is typically tropical. Rhabdothamnus,
which extends a little south of 40°S (Allan 1961), represents the furthest entry by
the family into the temperate zone, although the coastal habitats Rhabdothamnus
occupies have minimal extremes for that latitude. Given the relatively mesic
preferences of taxa in the family, one may see if wood anatomy is correspondingly
mesomorphic.

Relatively little work has been done on wood anatomy of Gesneriaceae. The
summary of Metcalfe and Chalk (1950) cites references in which data are quite
limited in detail. Thus most of the observations by Metcalfe and Chalk are original
rather than derived from other authors; even Solereder (1908) offers little infor-
mation on the family.

Gesneriaceae are unusual in having a large number of species in which wood
is rayless, at least earlier in ontogeny. The significance of this phenomenon is
interesting in its implication for evolution of habit. Raylessness appears to indicate
secondary woodiness in Gesneriaceae as it does in Plantago (Carlquist 1970).
Because raylessness is pervasive in Gesneriaceae, the family is an excellent one
for study of the phenomenon. The fact that Drymonia is exceptional for Gesneri-
aceae in its vining habit makes it an interesting subject for study of how wood
anatomy of vines differs from that of shrubby or arboreal dicotyledons.

MATERIALS AND METHODS

With few exceptions, wood samples were available in dried form. Stems of
Chirita lavandulacea were removed from plants cultivated at the Rancho Santa
Ana Botanic Garden by Mr. Walter Wisura and preserved in formalin-acetic-
alcohol. The stems of Chirita have only a thin cylinder of secondary xylem.
Information is doubtless lost by use of dried material; for example, nuclei in
septate fibers and starch (observed for Kohleria elegans) could have been dem-
onstrated had liquid-preserved material been available. The majority of the sam-
ples, as indicated in Table 1, were obtained from the Samuel J. Record Collection
of the U.S. Forest Products Laboratory. The courtesy of Dr. Regis B. Miller in
making those materials available to me is gratefully acknowledged.

Geographical sources for the Gesneriaceae studied are as follows: Besleria sp.,
Panama; B. paucifiora var. uniflora, Panama; Chirita lavandulacea, native to
Indonesia; Columnea purpurata, Panama; C. rubra, Panama; Coronanthera pul-
chra, New Caledonia; Cyrtandra anthropophagarum, Fiji;, C. ciliata, Fiji; C. cor-
difolia, Oahu, Hawaii; C. filibracteata, Bougainville, Solomon Is.; C. gayana,
Kauai, Hawaii; C. grayana var. lanaiensis, Lanai, Hawaii; C. harveyi, Viti Levu,
Fiji; C. hornei, Viti Levu, Fiji; C. kandavuensis, Fiji, C. lysiosepala, W. Maui,
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Hawaii; C. marthae, Raivavae, Austral Is.; C. platyphylla, Hilo, Hawaii; C. prattii,
Viti Levu, Fiji; C. propinqua, Oahu, Hawaii; C. rarotongensis, Rarotonga, Cook
Is.; C. spathacea, Fiji; C. urvillei, Ponape, Micronesia; C. victoriae, Viti Levu,
Fiji; C. yaeyamae, Iriomiote, Ryukyu Is.; Drymonia spectabilis, Panama; Gesneria
calycosa, Jamaica; G. duchartreoides, Cuba; G. ventricosa, Dominica; Kohleria
elegans, native to Guatemala (cultivated at the University of California Botanic
Garden, Berkeley); Rechsteineria reitzii, Santa Catarina, Brazil; Rhabdothamnus
solandri, N. Island, New Zealand; Rhytidophyllum auriculatum, Haiti; R. cren-
ulatum, Cuba; R. tomentosum, Cuba.

Dried wood samples were boiled prior to sectioning. For both boiled and liquid-
preserved specimens, sectioning on a sliding microtome without further treatment
proved to be the most effective procedure. No woods of Gesneriaceae are so hard
that any softening prior to sliding-microtome sectioning is necessary. On the
contrary, some taxa have woods so soft that sectioning on a sliding microtome
produces poor results, usually excessive tearing of vessel walls. These species
(notably Chirita lavandulacea, Drymonia spectabilis, and some species of Cyr-
tandra) yielded good sections when samples were softened with ethylene diamine,
embedded in paraffin, and sectioned on a rotary microtome (Carlquist 1982).

Sections were stained with safranin; most sections were also counterstained
with fast green. This counterstaining method proved useful for demonstrating
such details as pit membranes and septa in libriform fibers. Macerations were
prepared with Jeffrey’s Fluid and stained with safranin.

Means for data (Table 1) are based upon 25 measurements per feature except
for vessel wall thickness, libriform fiber diameter, and libriform fiber wall thick-
ness. In these, typical conditions were selected for measurement. Fewer than 25
measurements were used for libriform fiber diameter and for some of the other
features if the structure was scarce (e.g., uniseriate rays are never common in
Gesneriaceae). Number of vessels per mm? is based, as in earlier papers, on
counting all vessels in a field (grouped vessels are not counted as a single vessel).
Vessel diameter measurements are based on lumen diameter rather than external
diameter. Although the latter has been more commonly used, the former is now
considered preferable because the lumen diameter has more physiological signif-
icance. Number of vessels per group is determined by averaging counts when a
solitary vessel = 1.0, a pair of vessels in contact = 2.0, etc. The figure termed
Conductivity has been included in Table 1, since some current authors consider
it potentially a good way of expressing conductive capacity of the xylem; it does
not, however, seem as predictive of ecological features and their numerical range
as the Mesomorphy figure utilized in Table 1.

Data in Table 1 represent the work of the junior author, who also prepared the
majority of the sections and macerations. The remainder of the paper is the work
of the senior author.

ANATOMICAL FEATURES
Growth Rings

The Gesneriaceae studied are entirely diffuse porous with the exception of
Rhabdothamnus solandri, in which there is a slight change in accordance with
season in the diameter of vessels and of other cells (Fig. 21). Thicker-walled
libriform fibers occur in latewood of that species.
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Vessel Elements

In Gesneriaceae as a whole, vessel elements are relatively wide and long (Table
1) as compared to those of certain nonarboreal dicotyledon groups, such as those
in the woody flora of southern California (Carlquist and Hoekman 1985). The
widest vessels in the family were observed in the vining genus Drymonia (Fig.
10). Relatively wide vessels also occur in various species of Cyrtandra (Fig. 6).
The vessels of Kohleria elegans (Fig. 14) are slightly below the family mean; those
of Rhabdothamnus solandri (Fig. 21) are the narrowest observed in Gesneriaceae.
Rhabdothamnus solandri also has notably short vessel elements (Fig. 22), although
the shortest in the study belong to Kohleria elegans (Fig. 15). Notably long vessel
elements occur in the species of Gesneria (Table 1).

Vessels tend to be grouped into radial chains or multiples in Gesneriaceae as
shown in Fig. 1, 6, 14, and 21. The number of vessels per group (Table 1) shows
a moderate range within the family. Figures above 2.25 can be observed in Co-
ronanthera pulchra, Cyrtandra harveyi, C. pratii, and Rhytidophyllum crenulatum
(Table 1). Figures below 1.40 were found in Cyrtandra sp. (Tahiti), C. gayana,
Drymonia spectabilis (Fig. 10), and Rechsteineria reitzii.

The number of vessels per mm? does show an appreciable range in the family
as a whole (Table 1), although the range is not nearly as large as in such families
as Asteraceae or Ericaceae. The greatest density of vessels is shown by Rhab-
dothamnus solandri (Fig. 21), followed by Coronanthera pulchra. The values in
these species are about double the vessel density for the family as a whole. Notably
low vessel density is shown by a number of Cyrtandra species. The genera other
than Cyrtandra exceed Cyrtandra in vessel density except for Drymonia, in which
high vessel density would not be expected because of the great vessel diameter in
that genus.

Vessel wall thickness is moderate, with most species close to 2.5 um.

Perforation plates are simple throughout the family. An exception to this is
seen in Kohleria elegans (Fig. 16-20). Metaxylem perforation plates in this species
(Fig. 19, right) are scalariform. Although simple perforation plates are predom-
inant in secondary xylem in K. elegans, various types of perforation plates that
may be regarded as modifications of a scalariform condition occur in at least 5%
of the end plates of vessel elements. As shown in Figure 18-20, three or more
perforations, separated by bordered bars, are characteristic. Some perforation
plates in K. elegans are simple except for presence of a strand of wall material
(Fig. 16, 17).

Lateral walls of vessels in Gesneriaceae show an interesting range. Intervascular
pits are basically circular to slightly oval, as shown for Drymonia spectabilis (Fig.
12) or Rechsteineria reitzii (Fig. 4). Where pits are crowded, pit cavities take on
a polygonal outline. Such polygonal pits were observed in vessels of Cyrtandra
filibracteata, C. harveyi, C. kandavuensis, C. platyphylla, C. propinqua, C. spa-
thacea, and C. yaeyamae. Most pits bear rather markedly elliptical apertures.
Exceptions to this, in which pit apertures are circular to oval in outline, were
observed in Cyrtandra gayana, C. hornei, C. yaeyamae, Drymonia spectabilis
(Fig. 12), and Rechsteineria reitzii (Fig. 4).

Pit apertures are mostly much smaller than pit cavities. In a few Gesneriaceae,
however, the pit apertures are “gaping,” i.e., nearly as wide as the pit cavity. This
condition is illustrated clearly in the case of intervascular pits for Rechsteineria
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Fig. 1-5. Wood sections of Gesneriaceae.— 1-2. Besleria sp. (Oxford FPRI 3696).— 1. Transection.
Pores are sparse. — 2. Tangential section. The wood is rayless. — 3. Chirita lavandulacea (cult. RSABG),
portion of tangential section, showing vessel wall facing parenchyma. Scalariform and pseudoscalari-
form pitting evident.—4-5. Rechsteineria reitzii (Reitz & Klein 4068, UC), vessel walls from radial
section, showing relatively wide pit apertures. —4. Intervascular pitting, perforation plate.—S5. Vessel-
parenchyma pitting. (Fig. 1, 2, magnification scale above Fig. 1 [finest divisions = 10 um]; Fig. 3-5,
scale above Fig. 2 [divisions = 10 um].)
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Fig. 6-9. Wood sections of Cyrtandra.—6-1. C. yaeyamae (Carlquist 15676, RSA).—6. Transec-
tion; fibers thin walled, pores in short radial chains.—7. Tangential section; multiseriate rays scarce
(one at left), uniseriate rays absent.—8. C. Iysiosepala (Carlquist 2147, RSA). Tangential section,
showing rayless condition.—9. C. lysiosepala (Carlquist 1853, RSA), radial section, showing two
rhomboidal crystals. (Fig. 6-8, magnification scale above Fig. 1; Fig. 9, scale above Fig. 3).
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Fig. 10-13. Wood sections of Drymonia spectabilis (SJRw 12090).— 10. Transection. Pores are
notably wide.— 11. Tangential section. To right of ray, near center, libriform fibers are storied. —12.
Portion of vessel wall from tangential section.—13. Septate fibers from radial section. (Fig. 10-22,
magnification scale above Fig. 1; Fig. 12—-13, scale above Fig. 3.)


































